How many moles of ATP are produced in aerobic respiration?

Is it 36 or 38 ATP?

ATP yield during aerobic respiration is not 36–38, but only about 30–32 ATP molecules / 1 molecule of glucose .

Does aerobic respiration produce 36 or 38 ATP?

The theoretical maximum yield of ATP for the oxidation of one molecule of glucose during aerobic respiration is 38. In terms of substrate-level phosphorylation, oxidative phosphorylation, and the component pathways involved, briefly explain how this number is obtained.

How many moles of ATP are produced during aerobic metabolism?

It can occur aerobically or anaerobically depending on whether oxygen is available. This is clinically significant because oxidation of glucose under aerobic conditions results in 32 mol of ATP per mol of glucose. However, under anaerobic conditions, only 2 mol of ATP can be produced.

How is 34 ATP produced?

The Krebs cycle takes place inside the mitochondria. The Krebs cycle produces the CO2 that you breath out. This stage produces most of the energy ( 34 ATP molecules, compared to only 2 ATP for glycolysis and 2 ATP for Krebs cycle). The electron transport chain takes place in the mitochondria.

Why do we use 36 ATP instead of 38?

If you use the phosphero-glycerol shuttle you get 36 ATP (trades cytoplasmic NADH for mitochondrial FADH2). NADH yields ~ 3 ATP thats why you get 38 if you use the malate shuttle. FADH2 yields ~ 2 ATP thats why you get 36 if you use the phosphero-glycerol shuttle.

THIS IS IMPORTANT:  Question: Do moles have whiskers?

Where do the 38 ATP come from?

In total, each glucose molecule undergoing cellular respiration produces 38 ATP molecules – 2 ATPs from glycolysis, 2 ATPs from the Kreb’s cycle, and 34 ATPs from the electron transport chain.

How are 32 ATP produced?

In a eukaryotic cell, the process of cellular respiration can metabolize one molecule of glucose into 30 to 32 ATP. The process of glycolysis only produces two ATP, while all the rest are produced during the electron transport chain.